# BATERÍAS ESTACIONARIAS DE PLOMO ABIERTO

# Normas de instalación, utilización y manteniminto

### Normas de seguridad

Las piezas metálicas de la batería siempre tienen tensión y son activas eléctricamente. Evitar los cortocircuitos. Utilizar utensilios con mango aislante. No llevar objetos metálicos mientras se trabaja con las baterías. Las baterías contienen ácido sulfúrico diluido, muy corrosivo. Emiten gases explosivos durante la carga. Evitar toda descarga electroestática, en particular la que provenga de la ropa. Se deberán cumplir las medidas de protección de la norma EN 50272-2.



Seguir las instrucciones de uso situadas junto a la batería.



`Peligro! Los elementos / monoblocs son pesados. Asegurarse de la estabilidad de la instalación. Utilizar únicamente equipos apropiados de transporte y elevación.



Riesgo de explosión y de incendio. Evitar los cortocircuitos. Atención: piezas metálicas con tensión. No dejar objetos o utensilios sobre la batería.



Durante cualquier intervención en las baterías, llevar gafas y traje de seguridad, respetar las normas de protección contra los accidentes.



Tensión peligrosa (tensiones > 60Vdc)



Aclarar con abundante agua cualquier proyección de ácido sobre la piel o a los ojos. Consultar a un médico rápidamente. La ropa con ácido debe lavarse con agua.



`No fumar! Mantenerse alejado de cualquier llama viva o chispas, debido al riesgo de explosión y de incendio.



El electrolito es muy corrosivo. Atención a las tapas y recipientes rotos.

### Reciclaje y desecho de las baterías usadas



Las baterías usadas contienen materiales reciclables. No se deberán desechar como residuo doméstico sino como residuo especial. Los métodos de recuperación y de reciclaje serán acordados con el fabricante o el vendedor y aplicados en este sentido.



### Garantía

El no respetar las normas de instalación, utilización y mantenimiento, reparaciones llevadas a cabo con piezas de repuesto no homologadas, una utilización no conforme a las normas, la adición de productos diversos al electrolito y la interferencia no autorizada con la batería invalidan toda reclamación en concepto de garantía,

### RECEPCION Y ALMACENAJE

Controlar toda señal de deterioro o ausencia de piezas en el paquete.

Almacenar la batería en un lugar seco, limpio y preferentemente fresco y protegido de las heladas. No exponer los elementos directamente a la luz del sol, ya que ello puede ocasionar daños en las tapas y recipientes.

Como las baterías se entregan cargadas, el tiempo de almacenaje es limitado. A fin de recargar fácilmente las baterías tras un período prolongado, se aconseja no superar un tiempo de almacenaje sin recarga de:

3 meses a 20°C 2 meses a 30°C 1 mes a 40°C

El no seguir estas normas perjudicará la capacidad de la batería y acortará su vida

La recarga deberá realizarse según el párrafo a) o b) del apartado "Carga de puesta en servicio". De otro modo, los elementos pueden ser cargados en flotación a la tensión de flotación recomendada (tabla 5) durante el almacenaje.

Si las baterías se expiden cargadas secas, el tiempo de almacenaje no superará los 2 años. Para el rellenado, ver las instrucciones específicas de rellenado y puesta en servicio de las baterías cargadas secas.

# Almacenaje de una batería tras la puesta en servicio

Nunca almacenar una batería descargada, asegurarse de su perfecto estado de carga antes de almacenarla. Los tiempos de almacenaje y las normas de recarga anteriores se aplicarán igualmente en este caso.

### INSTALACIÓN

Las medidas de protección eléctrica, la ubicación y la ventilación de la instalación de la batería serán conformes a las normas y reglamentos en vigor. Se aplicará especialmente la norma EN 50272-2.

La batería debe instalarse en un lugar seco y limpio. Evitar colocar la batería en un lugar caliente o detrás de una ventana expuesta al sol.

La instalación deberá permitir un acceso fácil a las baterías. Para una instalación apropiada se recomiendan las estanterías para baterías. Colocar los elementos o monoblocs sobre la estantería y remitirse al plano para la posición correcta de las polaridades y una buena conexión, a fin de evitar los cortocircuitos.

### Montaje de los elementos en paralelo

Los elementos y monoblocs abiertos pueden conectarse en paralelo para proporcionar una capacidad más elevada. Para este tipo de montaje, utilizar únicamente baterías de la misma capacidad, tecnología y antigüedad con un máximo de 4 ramas en paralelo por razones prácticas. La resistencia de los cables en cada rama debe ser la misma, es decir, misma sección, misma longitud. Conectar las ramas en paralelo a las bornas terminales.

Comprobar que todas las superficies de contacto están limpias. Si es necesario, limpiarlas con un cepillo de latón. Apretar las tuercas utilizando el par de apriete adecuado (Tabla 1). Para evitar el deterioro de la materia plástica, no utilizar grasa. Colocar las fundas de protección contra el contacto directo.

Tabla 1: Par de apriete de los bulones de interconexión.

| Tipo de elemento o monobloc                                                        | Apriete<br>(Nm) |
|------------------------------------------------------------------------------------|-----------------|
| TUBULAR<br>OPzS (M10-hembra)<br>OPzS-OPzSC (M12-macho)<br>TL-TV-TY-TZ (M10-hembra) | 25<br>18<br>25  |
| PLANO<br>OP-OPC-OPS-OPSC<br>Vb o UPS H monobloc (M8)<br>Vb o Vb H elemento (M10)   | 18<br>12<br>25  |

Seguir la polaridad para evitar cortocircuitos de los grupos de elementos. Una conexión mal apretada puede ocasionar problemas para el reglaje del cargador, un funcionamiento heterogéneo de la batería y perjudicar a la batería y/o al personal.

Conectar finalmente la batería a la alimentación en corriente continua, con el cargador parado, los fusibles de las baterías retirados y la carga desconectada.

Asegurarse de que la polaridad es correcta, borna positiva de la batería a borna positiva del cargador. Conectar el cargador y la carga remitiéndose al apartado "Carga de puesta en servicio". Deberá vigilarse la primera carga a fin de no superar los límites y no alcanzar temperaturas inaceptables.

El nivel de electrolito puede variar con el transporte. El nivel final de electrolito se obtendrá después de la carga de puesta en servicio. Pequeñas cantidades que falten de electrolito (hasta 3 mm.) podrán ser compensadas utilizando agua destilada.

## CARGA DE PUESTA EN SERVICIO

Durante la puesta en servicio de una batería nueva (primera carga), el procedimiento puede ser el siguiente (procedimiento a) ó b) recomendado): a) curva IU (carga rápida):

a tensión aumentada de 2.33 – 2.40 V/elemento. El tiempo de carga será de 12 a 36 horas en función de las condiciones de carga inicial. La corriente se limitará a 4x1<sub>10</sub>.

b) curva I (carga rápida):

carga a corriente constante al 2,5-5 A/100 Ah con una tensión final de 2,50 a 2,75 V/elemento. Vigilar la carga. El tiempo de carga será de 6 a 24 horas.

Si se supera la temperatura máxima de +45°C, la carga debe ser interrumpida, o

continuada pero a una corriente reducida, o se pasará temporalmente a carga de flotación.

La carga rápida puede ser interrumpida o transformada en carga de flotación cuando se alcance el estado de carga. c) carga de flotación:

con una tensión de flotación recomendada (tabla 5). Se alcanzará la plena capacidad tras un largo período de 4 a 6 semanas en función del estado de carga.

El pleno estado de carga se alcanza cuando las tensiones de los elementos ya no aumentan durante 2 horas o cuando la corriente de carga ya no se cae. Se ha de alcanzar la densidad nominal del electrolito al final de la carga (Tolerancia  $\pm$  0,01 kg/l).

Para tensiones minimales al final de la carga utilisando la curva a corriente constante, ver la tabla 2.

Tabla 2: Tensiónes al final de la carga

| Corriente de carga     | 25°C     | 35°C     | 45°C     |
|------------------------|----------|----------|----------|
| 0.50 x I <sub>10</sub> | 2.65V/eI | 2.60V/eI | 2.55V/eI |
| 0.25 x I <sub>10</sub> | 2.60V/el | 2.55V/el | 2.50V/el |

### APLICACION ESTACIONARIA/ TENSION DE FLOTACION

### Tensión de flotación

La tensión de flotación/carga recomendada es de 2,23  $\lor$  o 2,25  $\lor$  por elemento a 20°C según el tipo (ver la tabla 5). La tensión del cargador es de  $U_{flo}$  por elemento x número de elementos. (Tolerancia  $\pm$  1%).

Si la temperatura media de la batería se sitúa fuera de los límites recomendados en explotación, es decir, +10°C a +30°C, habrá que reducir la tensión de flotación, por encima de +30°C, en (T°<sub>elemento</sub> – 30°) x 0.003V/elemento (sin ser inferior a 2,18 V/elemento) y aumentarla en (10° – T°<sub>elemento</sub>) x 0,003 V/elemento, cuando la temperatura sea inferior a 10°C.

Se pueden observar variaciones de tensiones por elemento de –0,05 a +0,10 V/elemento. No obstante, la tensión total de la batería debe mantenerse dentro de los límites mencionados anteriormente.

### Corriente de carga

La limitación de la corriente de carga de las baterías no es necesaria para una carga de flotación. Para tensiones de carga superiores a 2,40 V por elemento, la corriente de carga se limitará a 4 x l<sub>10</sub> Tras la obtención de la tensión de

desgasificación de 2,40 V por elemento, una limite de corriente de 2,5 a 5 A/100 Ah està recomendada, ver la tabla 3.

Tabl, 3: Límites de las corrientes de carga

| Procedi-<br>miento<br>de carga      | Corriente de<br>carga máxima<br>por 100 Ah | Tensión<br>elemento          | Límites de<br>temperatura |
|-------------------------------------|--------------------------------------------|------------------------------|---------------------------|
| Curva IU                            | Recomendada<br>5A a 40A                    | 2.33 V/el<br>2.40 V/el       | +45°C                     |
| Curva I<br>(superior a<br>2.40V/el) | 2.5 A a 5 A                                | 2.50 V/el<br>to<br>2.75 V/el | a<br>0°C                  |

### Recarga rápida

Para reducir el tiempo de recarga, se puede recargar la batería a 2,33 - 2,40 V por elemento con una corriente limitada a 4 x l<sub>10</sub>. La recarga rápida puede pasar a carga de flotación cuando la batería haya alcanzado su pleno estado de carga.

### Corriente pulsante

En aplicación estacionaria, el valor efectivo de la corriente pulsante alternativa no deberá superar 5A por 100Ah de C<sub>10</sub>, pues de lo contrario se reducirá la duración de la vida de la batería.

### **TEMPERATURA**

Los límites de temperatura en explotación son de 0°C a +55°C.

La temperatura recomendada de explotación está entre  $+10^{\circ}$ C y  $+30^{\circ}$ C. Todos los datos técnicos se refieren a la temperatura de  $+20^{\circ}$ C.

Temperaturas más elevadas reducen la duración de su vida. Temperaturas inferiores reducen la capacidad.

No exponer los elementos o monoblocs directamente al sol.

Factores de corrección de la temperatura

La temperatura influye en la capacidad a obtener. Se deberán tener en cuenta los siguientes coeficientes de temperatura, siendo la temperatura de referencia 20°C.

Tabla 4:

| Autono-<br>mía    | 0°C  | 5°C  | 10°C | 15°C | 20°C | 25°C | 30°C | 35°C | 40°C          |
|-------------------|------|------|------|------|------|------|------|------|---------------|
| 5 a 59<br>minutos | 0.60 | 0.71 | 0.81 | 0.91 | 1    | 1.05 | 1.08 | 1.10 | 1.12          |
| 1 a 24<br>horas   | 0,80 | 0,86 | 0.91 | 0.96 | 1    | 1.03 | 1.05 | 1.07 | 1 <b>.0</b> 8 |

Ejemplo: Una batería capacidad 200 Ah a 20°C para una autonomía de 5 horas tendrá una capacidad de 182 Ah cuando sea descargada a 10°C (200 x 0.91).

### **ELECTROLITO**

El electrolito es ácido sulfúrico diluido. La densidad nominal del electrolito en estado de carga se muestra en la siguiente tabla, siendo la temperatura de referencia 20°C.

Tabla 5: densidad del electrolito (en kg/l)

| Table 5: deficied and electronic (off kg/f/ |                                 |                          |                |  |  |  |  |  |  |
|---------------------------------------------|---------------------------------|--------------------------|----------------|--|--|--|--|--|--|
| Tecnología<br>tubular                       | OPzS<br>OPzSC<br>TL-TV<br>TY-TZ |                          |                |  |  |  |  |  |  |
| Tecnología<br>plana                         | Vb                              | OP<br>OPC<br>OPS<br>OPSC | UPS H<br>Vb H  |  |  |  |  |  |  |
| Densidad<br>nominal a 20°C                  | 1.240                           | 1,250                    | 1 <b>.2</b> 80 |  |  |  |  |  |  |
| Nivel                                       | Máximo                          | Medio                    | Máximo         |  |  |  |  |  |  |
| Tensión de<br>flotación a 20°C              | 2,23 V/eI                       | 2.23V/el                 | 2.25V/el       |  |  |  |  |  |  |

Tabla 6: valores de densidad en función del nivel de electrolito a 20°C (kg/l)

Elementos/monoblocs con placas positivas tubulares

| TYPO       | Minimo | Medio | Maximo |
|------------|--------|-------|--------|
| OPzS-OPzSC | 1,260  | 1,250 | 1,240  |
| TL-TV-TY   | 1,280  | 1.260 | 1,240  |
| TZ         | 1.265  | 1.250 | 1.240  |

Elementos/monoblocs con placas positivas planas

| TYPO                | Minimo | Medio | Maximo |
|---------------------|--------|-------|--------|
| OP-OPC-<br>OPS-OPSC | 1.265  | 1.250 | 1,235  |
| Vb                  | 1,260  | 1.250 | 1,240  |
| UPS H               | 1,300  | 1.290 | 1.280  |
| Vb H                | 1,300  | 1,290 | 1,280  |

Nivel nominal

### Corrección de temperatura de la densidad del ácido

Por temperaturas superiores o inferiores a 20°C, hay que aplicar una corrección. El factor de corrección de temperatura de la densidad es –0,0007 kg/l por °C. Ejemplo: una densidad del electrolito de 1,230 kg/l a +35°C corresponde a una densidad de 1,240 kg/l a +20°C.

### **DESCARGA**

### Tensión de fin de descarga

La batería no deberá descargarse más profundamente que la capacidad especificada en las tablas de prestaciones.

Descargas más profundas pueden perjudicar a la batería y acortar su vida. Por regla general, la tensión de fin de descarga debe limitarse a los valores siguientes:

Tabla 7: tensiones finales

| Tabla 7 . terisiones in    | iales            |
|----------------------------|------------------|
| Duración<br>de la descarga | Tensión<br>final |
| 5 min < t < 59 min         | 1.60 V/elemento  |
| 1h < t < 5h                | 1.70 V/elemento  |
| 5h < t < 8h                | 1.75 V/elemento  |
| 8h < t < 24h               | 1.80 V/elemento  |

Las tensiones individuales no deberán nunca ser inferiores en más de 0,2 V/elemento respecto a UE. Se recomienda aplicar un equipo de control de tensión mínima para evitar la descarga profunda. Prestar atención a los pequeños equipos que no se desconectan automáticamente al final de la descarga,

### Elementos descargados

Después de las descargas, incluso parciales, las baterías deben ser inmediatamente recargadas. El no seguir estas normas puede perjudicar a la vida y fiabilidad de la batería.

### Nota importante:

Toda descarga profunda es abusiva y repercutirá en la duración de la vida de la batería.

### **TESTS**

Se deberán efectuar tests de capacidad según la norma EN 60896-11. Antes de ensayar las nuevas baterías, asegurarse de que se ha efectuado una carga de puesta en servicio suficiente y que las densidades del electrolito corresponden a la densidad nominal

 $(\pm 0.01 \text{ kg/l})$ . Densidades menores dan lugar a capacidades inferiores.

### **RECARGA**

Después de una descarga, la batería puede ser recargada a la tensión de explotación (tensión de carga de flotación). A fin de reducir el tiempo de carga, la recarga se puede efectuar con una tensión de carga rápida de 2,33 a 2,40 V/elemento. Los tiempos de recarga dependen de la profundidad de descarga y de la corriente de carga disponible; por regla general, son de 10 a 20 horas para corrientes de carga entre 5A y 40A por 100Ah capacidad nominal. Recargar 1,2 veces la capacidad descargada. Durante la recarga, hasta 2,40 V/elemento el valor efectivo de la corriente pulsante puede alcanzar temporalmente, como máximo, 10 A por 100 Ah capacidad nominal.

### CARGA DE IGUALACIÓN

Tras una descarga profunda o una recarga inadecuada, se hace necesaria una carga de igualación. Puede efectuarse de la manera siguiente:

 a) carga a tensión aumentada de 2.33 – 2.40 V/elemento hasta un máximo de 72 horas.

b) curva de carga I según el apartado "Carga de puesta en servicio" b).

Si se supera la temperatura máxima de 45°C, la carga debe ser interrumpida, o continuada pero a una corriente reducida, o se pasará temporalmente a carga de flotación. El final de la carga de igualación se alcanza cuando la densidad del electrolito y las tensiones de los elementos ya no aumentan durante 2 horas.

Debido a que el nivel de tensión permisible puede ser superado durante una carga a tensiones aumentadas, se deberán tomar medidas apropiadas para proteger los circuitos de carga, por ej., desconectándolos.

### MANTENIMIENTO/CONTROLES

### Reposición del nivel de electrolito

Ajustar el nivel de electrolito hasta el nivel nominal, sin sobrepasar la marca

"MÁXIMO". Utilizar exclusivamente agua destilada o desmineralizada (conductividad máx. 10 uS/cm).

Tras la reposición del nivel de electrolito una carga de igualación

puede aplicarse para reducir el tiempo de homogeneización de la densidad del electrolito.

### Limpieza

Las tapas y recipientes deben estar siempre secos y sin polvo. Limpiar exclusivamente con un trapo de algodón húmedo sin fibras. Sintéticas.

AVISO IMPORTANTE - No utilizar ningún tipo de aceite, disolvente, detergente, disolventes hechos a partir de petróleo o soluciones con amoniaco para limpiar las tapas y recipientes de la batería. Estos productos causan daños irreversibles a la tapa y contenedor del acumulador y por lo tanto su uso invalidará la garantía.

Si la tapa o recipiente del elemento está mojado o presenta signos de electrolito, limpiar con un algodón mojado con una solución de bircabonato sódico y agua fría , mezclada en la siguiente proporción ; 0,5 kg de bicarbonato por cada 5 litros de agua . Después de esto limpiar con un algodón humedecido con agua limpia.

Evitar la carga electroestática.

### **Tapones**

Los tapones de los elementos con pastillas porosas o los de material antideflagrante de tipo cerámico con apertura para el rellenado no se tienen que limpiar con agua o colocar boca abajo. En caso que el material poroso se moje por el electrolito, se debe cambiar el tapón cuando se realice el manteninimiento programado. Si es necesario, los tapones estándar sin pastillas porosas se pueden limpiar con agua desmineralizada. Secarlos bien antes de volver a colocarlos en la batería.

### Mediciones - Lecturas

Cada 6 meses, hacer mediciones y lecturas de: Tensión de la batería, tensiones de algunos elementos/monoblocs (elementos piloto), temperatura del electrolito de algunos elementos/monoblocs (elementos piloto) y temperatura ambiente.

Una vez al año, registrar las tensiones y densidades del electrolito de todos los elementos/monoblocs.

La densidad del electrolito se medirá antes de la reposición de agua o bien después de la carga rápida.

Llevar un cuaderno de mantenimiento en el que se anoten todos los valores tomados así como diferentes sucesos como los tests de capacidad, fechas de reposición del nivel, tiempos y condiciones de almacenaje, etc.

### **APLICACIONES ESPECIALES**

Si los elementos o monoblocs han de ser utilizados en aplicaciones especiales, como de ciclaje repetido o en condiciones ambientales extremas, contacten con el departamento mercante.

Para más información, consulten nuestra página web www.enersys-emea.com

|                 | <b>C</b> <sub>10</sub> | <b>C</b> <sub>5</sub> | C³                    | C <sub>1</sub>      | Internal<br>resistance | Short circuit courrant | L   | W    | Н   |      |
|-----------------|------------------------|-----------------------|-----------------------|---------------------|------------------------|------------------------|-----|------|-----|------|
| 12 Volt         | 1,80                   | 1,80                  | 1,79                  | 1,75                | [mOhm/bloc]            | [ A ]                  |     | [mm] |     | [kg] |
| Vb 12142        | 33,0                   | 30,2                  | 27,2                  | 21,0                | 12,2                   | 983                    | 221 | 176  | 277 | 20,8 |
| Vb 12143        | 50                     | 45,3                  | 40,8                  | 31,5                | 8,1                    | 1487                   | 221 | 176  | 277 | 24,8 |
| Vb 12144        | 66,0                   | 60,4                  | 54,4                  | 42,0                | 6,1                    | 1960                   | 311 | 176  | 277 | 33,7 |
| Vb 12146        | 100                    | 90,6                  | 81,6                  | 63,0                | 4,1                    | 2934                   | 389 | 176  | 277 | 45,6 |
| Vb 12147        | 116                    | 106                   | 95,2                  | 73,5                | 3,5                    | 3433                   | 469 | 176  | 277 | 53,5 |
| Vb 12149        | 150                    | 136                   | 122                   | 94,5                | 2,7                    | 4399                   | 553 | 176  | 277 | 65,5 |
| 6 Volt          |                        |                       |                       |                     |                        |                        |     |      |     |      |
| Vb 6157         | 189                    | 172                   | 155                   | 119                 | 1,7                    | 3604                   | 284 | 229  | 332 | 45,8 |
| Vb 6159         | 243                    | 221                   | 199                   | 153                 | 1,3                    | 4610                   | 284 | 229  | 332 | 51,6 |
|                 |                        |                       |                       |                     | ·                      |                        |     |      |     | ·    |
|                 | <b>C</b> <sub>10</sub> | C <sub>5</sub>        | C <sub>3</sub>        | C <sub>1</sub>      | Internal               | Short circuit          | L   | w    | Н   |      |
|                 | 010                    | <b>O</b> <sub>5</sub> | <b>O</b> <sub>3</sub> | 01                  | resistance             | courrant               | -   | **   |     |      |
| 2 Volt          | 1,86                   | 1,84                  | 1,83                  | 1,78                | [mOhm/bloc]            | [ A ]                  |     | [mm] |     | [kg] |
| Vb 2305         | 250                    | 225                   | 200                   | 144                 | 0,50                   | 4195                   | 122 | 266  | 440 | 30,1 |
| Vb 2306         | 300                    | 270                   | 240                   | 173                 | 0,41                   | 5034                   | 122 | 266  | 440 | 32,2 |
| Vb 2307 +       | 350                    | 315                   | 280                   | 202                 | 0,35                   | 5873                   | 122 | 266  | 440 | 34,3 |
| Vb 2308         | 400                    | 360                   | 320                   | 230                 | 0,31                   | 6712                   | 189 | 266  | 440 | 45,9 |
| Vb 2309         | 450                    | 405                   | 360                   | 259                 | 0,28                   | 7551                   | 189 | 266  | 440 | 48,0 |
| Vb 2310 +       | 500                    | 450                   | 400                   | <b>2</b> 88         | 0,25                   | 8390                   | 189 | 266  | 440 | 50,4 |
| Vb 2311 +       | 550                    | 495                   | 440                   | 317                 | 0,23                   | 9229                   | 189 | 266  | 440 | 52,9 |
| Vb 2312         | 600                    | 540                   | 480                   | 346                 | 0,21                   | 10068                  | 233 | 266  | 440 | 61,0 |
| Vb 2313 +       | 650                    | 585                   | 520                   | 374                 | 0,19                   | 10907                  | 233 | 266  | 440 | 63,3 |
| Vb 2314 +       | 700                    | 630                   | 560                   | 403                 | 0,18                   | 11746                  | 233 | 266  | 440 | 65,4 |
| Vb 2408         | 800                    | 688                   | 584                   | 424                 | 0,21                   | 10085                  | 374 | 213  | 550 | 98,1 |
| Vb 2409         | 900                    | 774                   | 657                   | 477                 | 0,18                   | 11346                  | 374 | 213  | 550 | 102  |
| Vb 2410         | 1000                   | 860                   | 730                   | 530                 | 0,16                   | 12606                  | 374 | 213  | 550 | 107  |
| Vb 2411 +       | 1100                   | 946                   | 803                   | 583                 | 0,15                   | 13867                  | 374 | 213  | 550 | 112  |
| Vb 2412         | 1200                   | 1032                  | 876                   | 636                 | 0,14                   | 15128                  | 374 | 298  | 550 | 140  |
| Vb 2413         | 1300                   | 1118                  | 949                   | 689                 | 0,13                   | 16388                  | 374 | 298  | 550 | 145  |
| Vb 2414         | 1400                   | 1204                  | 1022                  | 742                 | 0,13                   | 17649                  | 374 | 298  | 550 | 150  |
|                 |                        |                       |                       |                     | ·                      |                        |     |      |     |      |
| Vb 2415         | 1500                   | 1290                  | 1095                  | 795                 | 0,11                   | 18909                  | 374 | 298  | 550 | 155  |
| Vb 2416 +       | 1600                   | 1376                  | 1168                  | 848                 | 0,10                   | 20170                  | 374 | 298  | 550 | 159  |
| Vb <b>2</b> 417 | 1700                   | 1462                  | 1241                  | 901                 | 0,10                   | 21431                  | 374 | 383  | 550 | 189  |
| Vb 2418         | 1800                   | 1548                  | 1314                  | 954                 | 0,09                   | 22691                  | 374 | 383  | 550 | 194  |
| Vb 2419         | 1900                   | 1634                  | <b>13</b> 87          | 1007                | 0,09                   | 23952                  | 374 | 383  | 550 | 199  |
| Vb 2420         | 2000                   | 1720                  | 1460                  | 1060                | 0,08                   | 25213                  | 374 | 383  | 550 | 204  |
| Vb 2421 +       | 2100                   | 1806                  | 1533                  | 1113                | 0,08                   | 26473                  | 374 | 383  | 550 | 209  |
|                 |                        |                       |                       |                     |                        |                        |     |      |     |      |
|                 | P <sub>60 min</sub>    | P <sub>30 min</sub>   | P <sub>15 min</sub>   | P <sub>10 min</sub> | Internal<br>resistance | Short circuit courrant | L   | W    | Н   |      |
| 12 Volt         | 1,65                   | 1,65                  | 1,65                  | 1,60                | [mOhm/bloc]            | [ A ]                  |     | [mm] |     | [kg] |
| UPS 72 H        | 44                     | 70                    | 109                   | 137                 | 12,2                   | 1000                   | 221 | 176  | 277 | 21,0 |
| UPS 108 H       | 66                     | 106                   | 163                   | 206                 | 8,1                    | 1500                   | 221 | 176  | 277 | 25,0 |
| UPS 144 H       | 88                     | 141                   | 218                   | 274                 | 6,1                    | 2000                   | 311 | 176  | 277 | 34,0 |
| UPS 216 H       | 132                    | 212                   | 327                   | 411                 | 4,1                    | 3000                   | 389 | 176  | 277 | 46,0 |
| UP\$ 252 H      | 154                    | 248                   | 381                   | 479                 | 3,5                    | 3500                   | 469 | 176  | 277 | 54,0 |
| UPS 324 H       | 198                    | 318                   | 490                   | 615                 | 2,7                    | 4500                   | 553 | 176  | 277 | 66,0 |
| 6 Volt          |                        | 5,5                   | ,                     | 5.5                 | -,-                    |                        | 230 | ., 0 |     | 30,0 |
| UPS 378 H       | 252                    | 407                   | 626                   | 788                 | 1,6                    | 3770                   | 284 | 229  | 332 | 46,2 |
| UPS 486 H       | 323                    | 522                   | 799                   | 1006                | 1,3                    | 4850                   | 284 | 229  | 332 | 52,0 |
| O1 0 400 FI     | 323                    | JZZ                   | / 55                  | 1000                | ١٫٥                    | 4000                   | 204 | 223  | J32 | 52,0 |

|                       | <b>C</b> <sub>10</sub> | C <sub>8</sub> | C <sub>5</sub> | <b>C</b> ₃   | C <sub>1</sub> | Internal<br>resistance | Short circuit courrant | L   | W    | Н   |              |
|-----------------------|------------------------|----------------|----------------|--------------|----------------|------------------------|------------------------|-----|------|-----|--------------|
| 2 Volt                | 1,80                   | 1,80           | <b>1,7</b> 5   | <b>1,7</b> 5 | 1,70           | [mOhm/cell]            | [ A ]                  |     | [mm] |     | [kg]         |
| 4 OPzS 200            | 216                    | 201            | 184            | 159          | 112            | 0,85                   | 2400                   | 103 | 206  | 394 | 17,2         |
| 5 OPzS 250            | 270                    | 252            | 231            | 1 <b>9</b> 8 | 141            | 0,68                   | 3000                   | 124 | 206  | 394 | 20,8         |
| 6 OPzS 300            | 324                    | 302            | 277            | 237          | 169            | 0,57                   | 3600                   | 145 | 206  | 394 | 24,3         |
| 5 OPzS 350            | 390                    | 369            | 335            | <b>2</b> 87  | 191            | 0,60                   | 3400                   | 124 | 206  | 510 | 26,9         |
| 6 OPzS 420            | <b>46</b> 8            | 444            | 402            | 345          | 229            | 0,50                   | 4075                   | 145 | 206  | 510 | 31,5         |
| 7 OPzS 490            | 546                    | 517            | 469            | 402          | 267            | 0,43                   | 4750                   | 166 | 206  | 510 | 36,1         |
| 6 OPzS 600            | 660                    | 624            | 570            | 496          | <b>32</b> 7    | 0,40                   | 5000                   | 145 | 206  | 685 | 44,8         |
| 7 OPzS 700            | 817                    | 772            | 705            | 588          | 382            | 0,34                   | 5800                   | 210 | 191  | 685 | 57,6         |
| 8 OPzS 800            | 880                    | 832            | 760            | 662          | 437            | 0,30                   | 6650                   | 210 | 191  | 685 | 61,3         |
| 9 OPzS 900            | 1040                   | 984            | 895            | 753          | 491            | 0,27                   | 7475                   | 210 | 233  | 685 | 70,9         |
| 10 OPzS 1000          | 1100                   | 1040           | 950            | 8 <b>2</b> 7 | 546            | 0,24                   | 8300                   | 210 | 233  | 685 | 74,6         |
| 11 OPzS 1100          | 1260                   | 1192           | 1085           | 921          | 600            | 0,22                   | 9150                   | 210 | 275  | 685 | 84,4         |
| 12 OPzS 1200          | 1320                   | 1248           | 1140           | 993          | 655            | 0,20                   | 9950                   | 210 | 275  | 685 | 88, <b>0</b> |
| 11 OPzS 1375          | 1590                   | 1512           | 1385           | 1149         | 717            | 0,22                   | 8800                   | 210 | 275  | 835 | 109          |
| 12 OPzS 1500          | 1680                   | 1600           | 1465           | 1243         | 78 <b>0</b>    | 0,21                   | 9600                   | 210 | 275  | 835 | 114          |
| 13 OPzS 1625          | 1910                   | 1816           | 1665           | 1365         | 848            | 0,19                   | 10400                  | 214 | 399  | 811 | 140          |
| 14 OPzS 1750          | 2040                   | 1936           | 1775           | 1467         | 913            | 0,18                   | 11200                  | 214 | 399  | 811 | 144          |
| 15 OPzS 1875          | 2100                   | 2040           | 1870           | 1553         | 975            | 0,16                   | 12000                  | 214 | 399  | 811 | 149          |
| 16 OPzS 2000          | 2240                   | 2133           | 1955           | 1657         | 1040           | 0,15                   | 12800                  | 214 | 399  | 811 | 151          |
| 17 OPz <b>S 212</b> 5 | <b>2</b> 470           | 2352           | 2155           | 1779         | 1110           | 0,14                   | 13600                  | 212 | 487  | 811 | 180          |
| 18 OPzS <b>2250</b>   | 2600                   | 2472           | 2265           | 1881         | 1170           | 0,14                   | 14400                  | 212 | 487  | 811 | 184          |
| 19 OPzS 2375          | 2710                   | 2576           | 2360           | 1986         | 1240           | 0,13                   | 15200                  | 212 | 487  | 811 | 189          |
| 20 OPzS 2500          | 2800                   | 2666           | 2445           | 2079         | 1300           | 0,12                   | 16000                  | 212 | 487  | 811 | 193          |
| 22 OPzS 2750          | 3150                   | 3000           | 2745           | 2301         | 1430           | 0,11                   | 17600                  | 212 | 576  | 811 | 225          |
| 24 OPzS 3000          | 3360                   | 3208           | 2935           | 2487         | 1560           | 0,10                   | 19200                  | 212 | 576  | 811 | 234          |

|              | <b>C</b> <sub>10</sub> | C <sub>8</sub> | C <sub>5</sub> | C <sub>3</sub> | C,           | Internal<br>resistance | Short circuit | L            | W           | Н   |      |
|--------------|------------------------|----------------|----------------|----------------|--------------|------------------------|---------------|--------------|-------------|-----|------|
| 2 Volt       | 1,80                   | 1,80           | 1,80           | 1,80           | 1,80         | [mOhm/cell]            | [ A ]         |              | [mm]        |     | [kg] |
| OP 6/OPC 6   | 146                    | 143            | 121            | 1 <b>0</b> 8   | 84           | 0,74                   | 2846          | 122          | 189         | 380 | 13,4 |
| OP 7/OPC 7   | 170                    | 167            | 141            | 126            | <b>9</b> 8   | 0,67                   | 3150          | 122          | 18 <b>9</b> | 380 | 14,2 |
| OP 9/OPC 9   | 219                    | 215            | 181            | 162            | 126          | 0,55                   | 3800          | 122          | 189         | 380 | 15,8 |
| OP 10/OPC 10 | 244                    | 239            | 201            | 180            | 140          | 0,52                   | 4000          | 160          | 189         | 380 | 18,8 |
| OP 11/OPC 11 | <b>26</b> 8            | 263            | 221            | 198            | 154          | 0,48                   | 4355          | 160          | 189         | 380 | 19,5 |
| OP 12/OPC 12 | 292                    | <b>2</b> 87    | 242            | 216            | 1 <b>6</b> 8 | 0,45                   | 4625          | 160          | 189         | 380 | 20,2 |
| OP 13/OPC 13 | 317                    | 311            | 262            | 234            | 182          | 0,43                   | 4935          | 198          | 189         | 380 | 23,3 |
| OP 14/OPC 14 | 341                    | 335            | 282            | 252            | 196          | 0,40                   | 5285          | 1 <b>9</b> 8 | 189         | 380 | 24,1 |
| OP 15/OPC 15 | 366                    | 359            | 302            | 270            | 210          | 0,38                   | 5585          | 1 <b>9</b> 8 | 18 <b>9</b> | 380 | 24,3 |
| OP 16/OPC 16 | 390                    | 382            | 322            | <b>2</b> 88    | 224          | 0,36                   | 5920          | 1 <b>9</b> 8 | 189         | 380 | 25,7 |
| OP 17/OPC 17 | 414                    | 406            | 342            | 306            | <b>23</b> 8  | 0,33                   | 6300          | 236          | 18 <b>9</b> | 380 | 29,4 |
| OP 18/OPC 18 | 439                    | 430            | 362            | 324            | 252          | 0,31                   | 6730          | 236          | 189         | 380 | 30,2 |
| OP 19/OPC 19 | 469                    | 454            | 383            | 342            | 266          | 0,30                   | 7050          | 236          | 189         | 380 | 31,0 |
| OP 20/OPC 20 | 488                    | 478            | 403            | 360            | 280          | 0,28                   | 7400          | 236          | 189         | 380 | 31,8 |
| OP 21/OPC 21 | 512                    | 502            | 423            | <b>37</b> 8    | 294          | 0,27                   | 7790          | 274          | 18 <b>9</b> | 380 | 34,7 |
| OP 22/OPC 22 | 536                    | 526            | 443            | 396            | 308          | 0,25                   | 8220          | <b>2</b> 74  | 189         | 380 | 35,4 |

The electrical values shown in the table relate to loadings from fully charged condition at ambient temperature of 20°C. Connector losses are taken into account

Die angegebenen elektrischen Werte gelten für Belastungen aus vollgeladenem Zustand und bei einer Umgebungstemperatur von 20°C. Verbinderverluste sind berücksichtigt.

Les valeurs électriques contenues dans ce tableau font référence à des charges à partir d'un état de pleine charge à température ambiante de 20°C. Les pertes de connexion sont prises en compte.

Los valores electricos en esto cuadro referen a cargas a partir de un pleno estado de carga a temperatura ambiente de 20°C. Las pérdidas de conexión estan tenidas en cuenta.